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Abstract
We present an eigenvalue theory to study the stochastic dynamics of non-
stationary time-periodic Markov processes. The analysis is carried out by
solving an integral operator of the Fredholm type, i.e. considering complex-
valued functions fulfilling the Kolmogorov compatibility condition. We
show that the asymptotic behaviour of the stochastic process is characterized
by the smaller time-scale associated with the spectrum of the Kolmogorov
operator. The presence of time-periodic elements in the evolution equation
for the semigroup leads to a Floquet analysis. The first non-trivial
Kolmogorov’s eigenvalue is interpreted from a physical point of view. This
non-trivial characteristic time-scale strongly depends on the interplay between
the stochastic behaviour of the process and the time-periodic structure of
the Fokker–Planck equation for continuous processes, or the periodically
modulated master equation for discrete Markov processes. We present
pedagogical examples in a finite-dimensional vector space to calculate the
Kolmogorov characteristic time-scale for discrete Markov processes.

PACS numbers: 05.40.+j, 02.50.Ey, 02.30.Hq

1. General statements

It is well known that from a given stochastic prescription [1, 2] (Stratonovich, Ito, etc) any
stochastic differential equation (SDE) with a delta-correlated Gaussian noise leads to a well-
defined Markov process [3]. A continuous Markov process is completely characterized by
its Fokker–Planck operator (FPO), which can immediately be written from the corresponding
SDE. If some parameter of the SDE is time dependent, the stochastic process will not be
stationary. Particularly if such a dependence is time periodic the stochastic process is called
a periodic non-stationary Markov process (PNMP) [1, 4, 5]. This classification also applies
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for a discrete Markov process, i.e., characterized by a master equation (ME); this case will be
presented in the last section.

Now we want to discuss a method for solving a Fokker–Planck dynamics with time-
periodic drift or diffusion matrix. Let the Fokker–Planck equation be

∂tP (q, t) =
[
− ∂

∂qν

Kν(q, t) +
ε

2

∂2

∂qν∂qµ

Qνµ(q, t)

]
P(q, t)

= LFP(q, ∂q, t)P (q, t). (1.1)

Here q stands for the set of variables (q1, . . . , qn) and summation over the double appearing
indices ν, µ is understood. The drift Kν(q, t) and diffusion matrix Qνµ(q, t) are supposed to
be time periodic with time-discrete translation invariance t → t + T , i.e.,

Kν(q, t + T ) = Kν(q, t) (1.2)
Qνµ(q, t + T ) = Qνµ(q, t). (1.3)

ε is the parameter which measures the noise strength. The propagator (conditional probability
density) of the Fokker–Planck dynamics P(q, t |q0, t0) is a solution of (1.1) with the initial
condition

P(q, t0|q0, t0) = δ(q − q0).

The propagator is non-negative for any q and q0 and satisfies normalization to 1 on a given state
space D. If Kν and Qνµ are time independent the Fokker–Planck dynamics can be mapped
into an eigenvalue problem, then the propagator could be expanded into a biorthonormal set
of eigenfunctions of the FPO, indeed only closely related to the Sturm–Liouville problem [2].
The need of the adjoint eigenfunctions is due to the fact that in general the FPO is neither
Hermitian nor normal [3, 4, 6]. In the restricted case of detailed balance, the problem can
be mapped into a self-adjoint negative semi-definite eigenvalue problem, which shows the
existence of a complete set of eigenfunctions with negative (or zero) eigenvalues for some
restricted state space D (see Elliott’s theorem for a rigorous proof [7]), but for general FPOs
not even the existence of a complete set of eigenfunctions can be proved.

In the present work, we use the Floquet structure of the FPO or the master equation
to build up a characteristic value theory of an integral equation (the Fredholm equation of
the second kind with a non-symmetric kernel [8]). This approach based on a biorthogonal
eigenvector system, of the time-evolution operator in one period of time, can be used to obtain
the characteristic time-scales of the non-stationary stochastic problem. This procedure is more
amenable from the numerical point of view than other previous approaches [1, 9, 10] as we
discuss in section 6.3.

Our approach can also be extended to the periodic non-stationary quantum problem; in
this case the Kolmogorov compatibility condition is just the ‘fundamental composition law’
for the quantum time displacement operator.

In the following sections, we will give some applications of the eigenvalue theory, i.e.,
we deduce some connections between eigenvalues, eigenfunctions and quantities which
characterize the dynamics and mixing of the system, such as correlation functions, the
Lyapunov function, the spectrum and the generalized switching time between attractors [11].

2. The Kolmogorov operator

Every solution f (q, t) of the Fokker–Planck equation (1.1) satisfies the Kolmogorov
compatibility condition

f (q, t) =
∫

P(q, t |q ′, t ′)f (q ′, t ′) dq ′, (2.1)

for all t ′ � t .
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Definition. The Kolmogorov operator is given by (t2 � t1)

U(t2, t1) : f (q) →
∫

P(q, t2|q ′, t1)f (q ′) dq ′,

i.e. the evolution of every solution of the Fokker–Planck equation is obtained by the application
of the Kolmogorov operator

f (q, t2) = U(t2, t1)f (q, t1).

This is once again the Kolmogorov compatibility condition.

Proposition. The Kolmogorov operator satisfies the semigroup laws

U(t1, t1) = id (2.2)

U(t3, t1) = U(t3, t2)U(t2, t1). (2.3)

If the FPO is time periodic (see (1.2)–(1.3)), the Kolmogorov operator has the periodicity

U(t2 + T , t1 + T ) = U(t2, t1). (2.4)

Property (2.2) follows from the initial condition for the propagator, and property (2.3) from
the Chapman–Kolmogorov equation, which is valid for every Markov process. From (1.1) to
(1.3), it is easy to see that the propagator has the periodicity

P(q, t + T |q0, t0 + T ) = P(q, t |q0, t0),

from which property (2.4) follows. Due to the fact that the propagator generally is not
symmetric under the transformation q ↔ q0, the Kolmogorov operator in general is not
self-adjoint. Its adjoint is given by

U(t2, t1)
+ : φ(q) →

∫
φ(q ′)P (q ′, t2|q, t1) dq ′.

Proposition. The adjoint Kolmogorov operator satisfies

U(t1, t1)
+ = id U(t3, t1)

+ = U(t2, t1)
+U(t3, t2)

+, (2.5)

and if the FPO is time periodic (1.2)–(1.3)

U(t2 + T , t1 + T )+ = U(t2, t1)
+.

These properties follow immediately from the corresponding properties of the Kolmogorov
operator.

If φ(q, t) is a solution of the Fokker–Planck backwards equation

∂tφ(q, t) =
[
Kν(q, t)

∂

∂qν

+
ε

2
Qνµ(q, t)

∂2

∂qν∂qµ

]
φ(q, t)

= LFP(q, ∂q, t)
+φ(q, t), (2.6)

then its evolution backwards in time is obtained by the application of the adjoint Kolmogorov
operator

φ(q, t1) = U(t2, t1)
+φ(q, t2). (2.7)

We will call this equation the adjoint Kolmogorov compatibility condition.
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3. Evolution in one period of time

Now we consider the space of all complex-valued functions with finite norm satisfying the
Kolmogorov compatibility condition. In particular, we are interested in the eigenvalue problem
of U(t + T , t). Since the Kolmogorov operator in general is not self-adjoint, we are looking
for a complete biorthonormal set of eigenfunctions of U(t + T , t) and its adjoint U(t + T , t)+:

U(t + T , t)fi(q, t) = kifi(q, t) (3.1)
U(t + T , t)+φi(q, t + T ) = kiφi(q, t + T ) (3.2)

{φi, fj } =
∫

φi(q, t + T )fj (q, t) dq = δij . (3.3)

Using the definitions and properties of the previous section, the next lemma follows
immediately.

Lemma. Let f (q, t) satisfy the Kolmogorov compatibility condition (2.1) and φ(q, t) satisfy
the adjoint Kolmogorov compatibility condition (2.7), then we have

(a) If f (q, t0) is an eigenfunction of U(t0 + T , t0) with eigenvalue k then f (q, t) is an
eigenfunction of U(t + T , t) with the same eigenvalue k for all t.
If φ(q, t0 + T ) is an eigenfunction of U(t0 + T , t0)

+ with eigenvalue k then φ(q, t + T ) is
an eigenfunction of U(t + T , t)+ with the same eigenvalue k for all t.

(b) The eigenfunctions fi(q, t) and φi(q, t) have the Floquet structure

fi(q, t) = e−λi tgi(q, t) φi(q, t) = eλi t γi(q, t), (3.4)

where the functions gi(q, t) and γi(q, t) are periodic in t:

gi(q, t + T ) = gi(q, t) γi(q, t + T ) = γi(q, t) (3.5)

and λi must be chosen in such a way that the eigenvalue ki has the form

ki = e−λiT .

(c) The integral
∫

φ(q, t + T )f (q, t) dq does not depend on t, i.e., the scalar product {φ, f }
in (3.3) is well defined.

Proof.

(a) Since U(t + T , t) is periodic in t it is enough to show the proof for t0 + T > t > t0:

U(t + T , t)f (q, t) = U(t + T , t)U(t, t0)f (q, t0)

= U(t + T , t0)f (q, t0)

= U(t + T , t0 + T )U(t0 + T , t0)f (q, t0)

= U(t + T , t0 + T )kf (q, t0)

= kU(t, t0)f (q, t0)

= kf (q, t).

The proof for φ(q, t) can be stated analogously.
(b) Let ki = e−λiT then gi(q, t) is periodic in t:

gi(q, t + T ) = eλi (t+T )fi(q, t + T )

= eλi (t+T )U(t + T , t)fi(q, t)

= eλi (t+T )kifi(q, t)

= eλi tfi(q, t)

= gi(q, t).

The proof for φi(q, t) is again completely analogous.
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(c) Let t2 > t1:∫
φ(q, t1 + T )f (q, t1) dq =

∫
(U(t2 + T , t1 + T )+φ(q, t2 + T ))f (q, t1) dq

=
∫

(U(t2, t1)
+φ(q, t2 + T ))f (q, t1) dq

=
∫

φ(q, t2 + T )(U(t2, t1)f (q, t1)) dq

=
∫

φ(q, t2 + T )f (q, t2) dq.

Up to now this lemma was in principle only a conclusion from the time periodicity
of our problem (i.e. the Floquet theorem [9]). If we further take into account that
our equations describe probability distributions of Markov processes, we can make the
following conclusions.

(d) There always exists an eigenvalue k0 = 1 (λ0 = 0) with a constant adjoint eigenfunction
φ0(q, t) = γ0(q, t) = 1.

(e) Eigenfunctions for other eigenvalues have zero integral∫
fi(q, t) dq =

∫
gi(q, t) dq = 0, for ki �= 1.

(f) If the drift and diffusion matrix are not singular, the eigenvalue k0 = 1 is not
degenerate, and its eigenfunction is the asymptotic time-periodic distribution (ATPD)
f0(q, t) = g0(q, t) = Pas(q, t).

(g) All other eigenvalues have a modulus smaller than 1

|ki | < 1, i.e. real part λi > 0, for i = 1, 2, . . . . �

Proof.

(d) Since the propagator is a normalized probability density we have U(t + T , t)1 =∫
P(q ′, t + T |q, t) dq ′ = 1.

(e) Since the Fokker–Planck dynamics conserves the integral we have
∫

fi(q, t +T ) dq =∫
fi(q, t) dq = e−λi t

∫
gi(q, t) dq but the periodicity of gi(q, t) gives

∫
fi(q, t + T ) dq =

e−λi (t+T )
∫

gi(q, t + T ) dq = e−λi (t+T )
∫

gi(q, t) dq. Both are only possible if either
e−λiT (= ki) = 1 or

∫
gi(q, t) dq = 0 and therefore

∫
fi(q, t) dq = 0.

(f) Under these conditions [5], the system approaches a unique ATPD Pas(q, t) for t → ∞.
The eigenfunctions with eigenvalue 1 are precisely the time-periodic functions satisfying (3.1).
But Pas(q, t) is the only such function (besides scalar multiples).

(g) Since every solution of the Fokker–Planck dynamics approaches the ATPD Pas(q, t)

for t → ∞ all other eigenfunctions must vanish for t → ∞, so |ki | must be smaller than 1.
This proof follows from the existence of the Lyapunov function for PNMP [5], but part (g) of
the lemma can also be proved without using the uniqueness of the ATPD. Consider (3.2); thus
from the definition of the adjoint Kolmogorov operator it follows that

kiφi(q, t + T ) =
∫

φi(q
′, t + T )P (q ′, t + T |q, t) dq ′. (3.6)

Now we use that the propagator is non-negative for any q and q
′
and satisfies normalization to

1, and denote q by qm if q is such that |φi(q, t + T )| = max. Then from (3.6)

|ki ||φi(qm, t + T )| =
∣∣∣∣
∫

φi(q
′, t + T )P (q ′, t + T |qm, t) dq ′

∣∣∣∣
�

∫
|φi(q

′, t + T )|P(q ′, t + T |qm, t) dq ′
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�
∫

|φi(qm, t + T )|P(q ′, t + T |qm, t) dq ′

� |φi(qm, t + T )|,
so therefore |ki | � 1. �

For the rest of the paper, we will order the eigenvalues with decreasing modulus 1 = k0 >

|k1| > |k2| > · · ·, i.e., λi with increasing real part.
Up to now nothing is said about the completeness of the eigenfunctions system. Actually

this cannot be proved in general [2, 7]. But lemmas a and b show that from the existence of
a complete set of eigenfunctions for some fixed time t0 follows the existence for all times t.
For further conclusions, we assume that such a complete set of eigenfunctions exists, so that
the functions fi(q, t) and φi(q, t) satisfy∫

φi(q, t + T )fj (q, t) dq = δij

∞∑
i=0

φi(q
′, t + T )fi(q, t) = δ(q ′ − q).

(3.7)

Now we can expand every function h(q, t) which satisfies the Kolmogorov compatibility
condition (2.1) in a series of eigenfunctions

h(q, t) =
∞∑
i=0

Aifi(q, t) =
∞∑
i=1

Ai e−λi t gi(q, t),

where the coefficients Ai can be obtained from

Ai = {φi, h} =
∫

φi(q, t + T )h(q, t) dq.

In particular, the propagator can be written as

P(q, t |q0, t0) =
∞∑
i=0

Ai(q0, t0) e−λi (t−t0)gi(q, t), (3.8)

where the coefficients Ai(q0, t0) are periodic in t0. This can easily be seen from the periodicity
of P(q, t |q0, t0) and gi(q, t).

4. Periodic detailed balance

Proving the existence of a complete set of eigenfunctions of the Kolmogorov operator is still
an open question. The problems arise because on one hand the differential representation of
the Kolmogorov operator involves a time-ordered exponential [2–4, 6], which is difficult to
handle

U(t2, t1) = �T exp

(∫ t2

t1

LFP(q, ∂q, τ ) dτ

)
.

Here the time-ordering symbol �T stipulates that all operators appearing on the right have to be
taken in chronological order, i.e., according to decreasing time arguments. On the other hand
in its integral representation (2.1), the kernel (i.e. the propagator) is in general not symmetric.
For time-independent Markov processes, a symmetrization of the FPO is possible under the
condition of detailed balance with even variables under time inversion

P(x, t |y, 0)Pst(y) = P(y, t |x, 0)Pst(x).



Theory of eigenvalues for periodic non-stationary Markov processes 1553

(Pst(x) is the stationary solution of such a Markov process.) This fact leads to a self-adjoint
Fokker–Planck and Kolmogorov operator, which guarantees the completeness of the set of
eigenfunctions [2, 3, 6]. Furthermore, under these conditions the symmetrized FPO is negative
semi-definite, so that its eigenvalues are negative real numbers, i.e., the eigenvalues of the
Kolmogorov operator are real numbers between 0 and 1. In our case, we have no continuous
time translation symmetry but a discrete symmetry under the translation t → t + T . A
symmetrization of the Kolmogorov operator is possible under a similar condition as the
detailed balance which is compatible with our discrete time translation symmetry and which
we will call periodic detailed balance.

Definition. The periodic detailed balance (PDB) is held if

P(x, t + T |y, t)Pas(y, t) = P(y, t + T |x, t)Pas(x, t), for all x, y, t.

Proposition. If the periodic detailed balance is fulfilled, the Kolmogorov operator U(t + T , t)

is self-adjoint under the scalar product

{η, ξ} =
∫

η(x)ξ(x)/Pas(x, t) dx.

Proof.

{η,U(t + T , t)ξ} =
∫ ∫

η(x)P (x, t + T |y, t)ξ(y)/Pas(x, t) dx dy

=
∫ ∫

P(y, t + T |x, t)η(x)ξ(y)/Pas(y, t) dx dy

= {U(t + T , t)η, ξ}. �

As we have mentioned before if U(t +T , t) is an operator in an infinite-dimensional space
the completeness of the eigenfunctions (3.7) is a matter for proof in each individual case, but
when the Kolmogorov operator is a finite matrix the completeness can in fact be asserted when
U(t + T , t) is symmetric under a specific scalar product, then we have

Corollary. In a finite-dimensional vector space, if PDB is fulfilled there exists a complete set
of eigenfunctions of the Kolmogorov operator U(t + T , t).

5. Strong mixing

Strong mixing was originally introduced as one of the several conditions that a stochastic
process must satisfy in order that the central limit theorem is applicable. This question does
not arise here, since our process is in general non-Gaussian. We are more interested in the
strong mixing condition as a form of asymptotic independence.

Definition. Let q(t) be a realization of a stochastic process. The correlation function is
defined by

〈〈q(t)q(t ′)〉〉 = 〈q(t)q(t ′)〉 − 〈q(t)〉〈q(t ′)〉,
where the simple bracket represents the ensemble average.

Particularly the correlation function is calculated for the long-time limit, i.e., by using for the
one-time probability distribution the ATPD Pas(q, t). Then the asymptotic two-time second
moment is given by

〈q(t)q(t ′)〉as =
∫ ∫

qq ′P(q ′, t ′|q, t)Pas(q, t) dq dq ′,
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where we have t ′ � t without a loss of generality. We can consider the correlation function as
a function of the variables t and τ = t ′ − t . By using the representation of the propagator in
the set of eigenfunctions of the Kolmogorov operator we get

〈〈q(t + τ)q(t)〉〉as =
∞∑
i=1

e−λiτBi(t, τ ), (5.1)

where the functions

Bi(t, τ ) =
∫ ∫

qq ′Ai(q, t)gi(q
′, t + τ)g0(q, t) dq dq ′, i = 1, 2, 3 . . . ,

are periodic functions in t and τ . Therefore, the asymptotic correlation function is an oscillatory
decreasing function of τ for every fixed time t, which goes to zero for τ → ∞. Therefore,
under the assumption of the completeness of the eigenfunctions (3.7), we get the following:

Corollary. Every periodic non-stationary Markov process characterized by a non-singular
drift and diffusion matrix is strong mixing.

5.1. A correlation function for large τ

If we arrange the eigenvalues of the Kolmogorov operator in the order 1 = k0 > |k1| >

|k2| > · · · and retain only the slowest decreasing summand in expansion (5.1) of the asymptotic
correlation function, we get

〈〈q(t + τ)q(t)〉〉as ≈ e−λ1τB1(t, τ ).

Then after each period of time in τ the asymptotic correlation function falls by a factor
k1 = e−λ1T , i.e., the first eigenvalue of the Kolmogorov operator smaller than 1 characterizes
the slope of the decay of 〈〈q(t + τ)q(t)〉〉as as a function of τ .

5.2. The Lyapunov function

Another interesting object, which also gives dynamical information of a stochastic process,
is the Lyapunov function. Traditionally, this function was introduced in order to analyse the
decay of the initial preparation of the system.

Definition. Let the system be prepared in one point q0 at some certain time t0. The Lyapunov
function is defined by

H(t) =
∫

P(q, t |q0, t0) ln
P(q, t |q0, t0)

Pas(q, t)
dq.

Note that for every q0,H(t) is a non-negative decreasing function and that the approach of
the system from the preparation point q0 towards the ATPD is characterized by the decreasing
of H(t) [5]. If we again assume (3.7) and make use of the expansion of the propagator in
eigenfunctions of the Kolmogorov operator and take only the slowest decreasing part we get
the following:

Corollary. In the long-time regime the Lyapunov function H(t) is an oscillatory decreasing
function, which falls by a factor k2

1 in each period of time.

Note that in the asymptotic regime the decay of the correlation function (as a function of τ ) is
slower than the decay of the Lyapunov function. In the next section, we present an example
showing this fact.
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It is possible to interpret the time-scale Re[λ1]−1 that appears in the eigenvalue k1 as
a generalization of the Kramers escape time for periodic non-stationary Markov processes.
An important question for stationary processes, conveniently answered in terms of the FPO
framework, is what is the time required for the passage of a prepared initial state to the
final stationary state? Historically this problem was first studied by Kramers [12], and many
mathematicians [13] and physicists [14] have developed different perturbation approaches
to tackle this fundamental problem for bistable situations with clearly separated time-scales.
In the present section, we were concerned with a similar question but for a non-stationary
periodically modulated Markov process. But because the system periodically reaches a
situation where the stabilities and instabilities may not be well pronounced, the analysis is
even more complex than in the Kramers problem due to the disparate time-scales that the
system may have [11]. Therefore, the hope to find an analytical expression characterizing
the passage times is even more unlikely, so in the next section we introduce discrete Markov
processes in order to find some analytical answers to the characterization of λ−1

1 .

6. Applications to finite-dimensional vector spaces

A continuous nonlinear stochastic Markovian process can rarely be solved analytically, and
solving the integral equation related to the Kolmogorov eigenvalue problem is even more
complex. If we can arrange the eigenvalues of the Kolmogorov operator U(t + T , t) in the
form 1 = k0 > |k1| > |k2| > · · ·, we have shown that the asymptotic behaviour of the
periodic non-stationary process is controlled by k1. The important point to remark here is
that by finding the first non-trivial eigenvalue of Kolmogorov’s operator, we get the time-scale
Re[λ1]−1 which controls the asymptotic stochastic relaxation of the system, see section 5.
In fact, in previous works [11] we have studied numerically a noise-induced order–disorder
transition by employing the mentioned integral operator U(t + T , t). Here we will extend
our presentation concerning the Floquet analysis of non-stationary periodically modulated
processes to the case when the Markov process is discrete. In this situation, the evolution
equation of the process is controlled by a master equation rather than by a Fokker–Planck one,
so in order to solve U(t + T , t), we only have to deal with a matrix eigenvalue problem.

The ME of an arbitrary discrete Markov process is characterized by a master Hamiltonian
matrix H of finite dimension N × N (we exclude here the analysis of a system whose range is
denumerably infinite). This matrix H is real and in general non-symmetric, and it must fulfil
the fundamental conditions

Hj l � 0, j �= l, Hjj = −
∑
l(�=j)

Hlj .

Therefore, for a non-stationary Markov process, any result will have to be based on the two
properties: (1) Hj l(t) � 0, j �= l and (2) for each l we have

∑
j Hj l(t) = 0. This means that

in general the instantaneous matrix H(t) cannot be diagonalized. Consider now the situation
when the process is non-stationary but periodically modulated. In this case, we have the
additional temporal symmetry Hj l(t) = Hj l(t + T ); thus we can apply our Floquet analysis of
section 3. In this case, the Kolmogorov integral problem reduces to an eigenvector analysis.
This fact can be seen by noting that the Kolmogorov operator is

U(t2, t1) = �T exp

(∫ t2

t1

H(τ ) dτ

)
≡ P(t2 | t1), (6.1)

where P(t2 | t1) is the matrix Green’s function of the ME Ṗ = H(t) · P. Note the similitude
with the propagator introduced in section 2 when we deal with a continuous Markov process.



1556 M O Caceres and A M Lobos

From this comment it is trivial to see that the Kolmogorov eigenvalue problem, see (3.1)–(3.3),
reduces to a simple eigenvector problem of dimension N. We remark that in order to fully
characterize the temporal behaviour of an arbitrary discrete N-level PNMP, the Kolmogorov
operator technique turns out to be a suitable and fundamental approach to tackle that sort of
non-stationary problems.

6.1. Master equation toy model

A toy discrete stochastic process which, in the present context, can analytically be solved is
the so-called dichotomic process [2–4, 15] originally introduced by Kubo and Anderson. As
we pointed out before, in opposition to continuous Markov processes, the dichotomic process
has two discrete levels and the evolution equation that governs its propagator is the ME. Then
the Kolmogorov operator approach can immediately be applied.

Here we will work out a non-stationary dichotomic process for the case when the ME has
a discrete symmetry under the time translation t → t + T . In the present case, the Kolmogorov
operator is a 2 × 2 matrix (6.1), and the eigenvalues problem (3.1)–(3.3) reads(

P11 P12

P21 P22

)
·
(

fi(1, t)

fi(2, t)

)
= ki

(
fi(1, t)

fi(2, t)

)
(6.2)

(φi(1, t + T ) φi(2, t + T )) ·
(

P11 P12

P21 P22

)
= ki(φi(1, t + T ) φi(2, t + T )) (6.3)

{ �φi, �f j } ≡ (φi(1, t + T ) φi(2, t + T )) ·
(

fj (1, t)

fj (2, t)

)
= δij , ∀ i, j = 0, 1. (6.4)

As we commented in the lemma, the elements of the propagator are evaluated in one period
of time

Pαβ ≡ Pαβ(t + T | t), ∀α, β = 1, 2,

and they are periodic functions of t fulfilling the normalization conditions

P11 + P21 = 1, P12 + P22 = 1.

As expected, the one-time asymptotic time-periodic (ATP) probability (vector) of the discrete
system Pas(α, t),∀α, β = 1, 2, is related to the propagator (matrix) in the long-time limit.

The eigenvalue problem (6.2)–(6.4) can immediately be solved, so we get for the
eigenvalue k0 = 1 the right and left eigenvectors

�f 0 ≡ f0(1, t)

(
1

1−P11
1−P22

)
, �φ0 ≡ C

(
1
1

)
.

The function f0(1, t) and the constant C can be determined from normalization of the ATP
probability and the scalar-product condition { �φ0, �f 0} = 1.

From the eigenvalue k1, we get

�f 1 ≡ f1(1, t)

(
1

P11−1
P22−k1

)
, �φ1 ≡ φ1(1, t + T )

(
1

P11−k1
P11−1

)
,

and from orthogonality, { �φ0, �f 1} = { �φ1, �f 0} = 0, we obtain

P11 + P22 = 1 + k1, (6.5)

which is nothing more than the trace of the Kolmogorov operator, see (6.1). From the
scalar-product { �φ1, �f 1} = 1, we get the condition

f1(1, t)φ1(1, t + T ) =
(

1 +
P11 − k1

P22 − k1

)−1

.
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Using the Floquet structure (see lemma, part (b)) we know that f1(1, t) = e−λ1t(t) and
φ1(1, t + T ) = e+λ1(t+T )�(t), where (t) and �(t) are periodic functions of time. It is simple
to see that they fulfil

(t)�(t) = k1

(
P22 − k1

1 − k1

)
= k1

(
P11 − 1

k1 − 1

)
. (6.6)

So we arrive at the set of vectors

�f 0 = 1

1 − k1

(
1 − P22

1 − P11

)
; �φ0 =

(
1

1

)

�f 1 = e−λ1t

(
(t)

−(t)

)
; �φ1 = e+λ1(t+T )

(
�(t)

P11−k1
P11−1 �(t)

)
.

(6.7)

The calculation of the functions (t) and �(t) can be done by imposing the condition that
the following equality holds for any pair of times {t, t0} provided t � t0:

P(t | t0) =
∑

j

�f j (t) · �φj (t0 + T )ᵀ

= 1

1 − k1

(
1 − P22(t + T | t) 1 − P22(t + T | t)

1 − P11(t + T | t) 1 − P11(t + T | t)

)

+
eλ1(t0−t+T )(t)�(t0)

P11(t0 + T | t0) − 1

(
P11(t0 + T | t0) − 1 P11(t0 + T | t0) − k1

−P11(t0 + T | t0) + 1 −P11(t0 + T | t0) + k1

)
. (6.8)

Note that (6.6) follows from (6.8) considering that P(t0 | t0) = I, i.e., the identity matrix.
Defining �(t, t0) ≡ Tr[P(t | t0)] − 1 we can write the equations

�(t, t0) e−λ1(t0−t) = (t)

(t0)

P11(t + T | t) − 1

k1 − 1

k1

(t)
= �(t), (6.9)

from where both functions (t) and �(t) can be calculated (besides scalar multiples); see
(6.15) and (6.17) for two particular cases of �(t, t0).

In the present 2 × 2 model, there are only two important time-scales, T and λ−1
1 ;

interestingly the only function that remains to be calculated is the trace of the propagator,
which in fact depends on the temporal structure of H(t). On the other hand, the decay of the
slowest decreasing (antisymmetric) eigenvector �f 1 is dominated by the time-scale λ−1

1 .
Note that in the continuous case, the eigenfunction f1(q, t) has to be antisymmetric with

only one zero because such a function can only decay when there is a current across the
origin [11]. This situation is analogous to the Kramers metastable problem for stationary
Markov processes, mathematically the FPO is parabolic and its propagator can be written
as an eigenfunction expansion, with the eigenvalues appearing in exponential decay factors
associated with each eigenfunction. Thus, it turns out that the lowest non-trivial eigenvalue
of the FPO is just the inverse of the mean first passage time, in the large barrier limit [3]. But
this simple interpretation for the Kramers problem, in general, does not appear in periodic
non-stationary Markov processes.

The two-point correlation function, (5.1), in the discrete case reads

〈〈q(t + τ)q(t)〉〉as =
∞∑
i=1

e−λiτBi(t, τ ), (6.10)

where

Bi(t, τ ) = 1

ki

∑
αβ

qαqβgi(qα, t + τ)γi(qβ, t)g0(qβ, t).
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Here Ai(q0, t0) appearing in (3.8) has been replaced by γi(qβ, t)/ki and qα is the arbitrary
value that the discrete process can take. The time-periodic vectors gi(qα, t) and γi(qβ, t) can
be read from the Floquet structure of the eigenvectors associated with the eigenvalue problem
(3.1)–(3.3). In the present dichotomic case, these eigenvectors are given in (6.7); then we get

〈〈q(t + τ)q(t)〉〉as = e−λ1τB1(t, τ ), (6.11)

with

B1(t, τ ) = (t + τ)�(t)

k1

(
1 − P22

1 − k1

)
(q1 − q2)

2, (6.12)

where we have used (6.5).
In order to have an explicit expression for the non-trivial eigenvalue k1, we need to specify

the time-structure of the one period of time propagator P(t + T | t). In general, this matrix is
obtained from the solution of the ME

dP
dt

= H · P, (6.13)

where H is given in terms of the transition probability rate Wαβ

H =
(−W21 W12

W21 −W12

)
. (6.14)

As a particular asymmetric model, we assume here that the transition probability rate W12

is periodic in time with the structure W12 = A+B cos ωt , with A−B � 0; and that the reverse
transition rate is constant W21 = C � 0. Solving system (6.13) it is possible to write

P(t | t0) ≡
(

P11(t | t0) P12(t | t0)

P21(t | t0) P22(t | t0)

)
,

with

P11(t |t0) = �(t, t0) +
∫ t

t0

(A + B cos ωt ′)�(t, t ′) dt ′

P22(t |t0) = �(t, t0) +
∫ t

t0

C �(t, t ′) dt ′

P21(t |t0) = 1 − P11(t |t0)
P12(t |t0) = 1 − P22(t |t0),

where �(t, t ′) is

�(t, t ′) = exp

[
−(A + C)(t − t ′) +

B
ω

(sin ωt − sin ωt ′)
]

. (6.15)

This expression completely solves the Kolmogorov problem we have posed before. As a
matter of fact, it can be seen that the following expression holds:

1 + �(t, t ′) = P11(t |t ′) + P22(t |t ′).
Therefore, by taking in the former expression t ′ = t − T , and comparing with equation (6.5),
the eigenvalue k1 can be written in the form

k1 = P11(t + T |t) + P22(t + T |t) − 1 = exp[−(A + C)T ]. (6.16)

Note that for the present model, due to the symmetry of the periodic modulation in W12,
the Kolmogorov time-scale is independent of B and it is just characterized by the value
λ−1

1 = (A + C)−1. Nevertheless, as we have already mentioned, in general the time-scale
λ−1

1 strongly depends on the temporal structure of the matrix H(t). For example, if the time-
dependent W12 transition rate were of the Arrhenius type, the eigenvalue k1 would not be
independent of the amplitude of the periodic modulation.
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6.1.1. Periodically modulated Arrhenius-like model. Consider an asymmetric Arrhenius-
type model, so we now assume that the transition probability rate W12 is periodic in time with
the temporal structure W12 = A exp(b cos ωt), and as before W21 = C is constant in time.
Solving systems (6.13) and (6.14) for this model it is possible to write

�(t, t ′) = exp

[
−C(t − t ′) − A

∫ t

t ′
exp(b cos ωs) ds

]
. (6.17)

Therefore, Kolmogorov’s time-scale λ−1
1 = −T/ log k1 reads

λ−1
1 = [C + AI0(b)]−1, (6.18)

where I0(b) is the Hyperbolic or modified Bessel function [16]; in the case b = 0, there is no
periodic modulation and we reobtain the static or Kramers-like time-scale. In analogy with
the splitting problem [3], note that in the static case the rate λ1 is just given in terms of the
Kramers scape rates C and A.

The non-adiabatic formula (6.18) is therefore a useful starting point to study the relaxation
of our stochastic model in the presence of an external periodic modulation. It is interesting
to introduce here a perturbation in the amplitude of modulation b, in order to compare
Kolmogorov’s time-scale λ−1

1 with the static time-scale τs = [C + A]−1. Using the expansion
of the Bessel function, from (6.18) we get

λ−1
1 = τs

(
1 − Aτs

(
b2

4
+ · · ·

))
, (6.19)

it is worth pointing here that (6.18) is independent of T , showing therefore that (6.19) is not a
perturbative expression in the inverse of the period of the modulation. Thus, the comparison
of λ−1

1 against T will give information concerning the loss of correlation during the time-scale
of the external periodic modulation.

We see from the propagator expansion (3.8), i.e., using (6.8) for a dichotomic process,
that by increasing the amplitude of modulation b the antisymmetric Floquet eigenvector
�g1(t) = ((t),−(t)) dies out faster to reach the ATP probability (positive vector �g0(t)). In
a similar context, Kolmogorov’s eigenvalue k1 gets smaller for increasing b thus predicting a
faster strong mixing of the two-point correlation function (6.11).

We have proved in section 5 that in general the relaxation of the correlation and the
Lyapunov functions is, in the asymptotic limit, controlled by the Kolmogorov time-scale
∼ Re[λ1]−1. Therefore, in order to study the asymptotic relaxation of any PNMP, the important
task is to determine the first non-trivial eigenvalue k1. More complex objects can similarly be
studied in terms of the biorthogonal set of eigenvectors of U(t + T , t); for example, this is the
case of the stochastic resonance phenomenon.

6.1.2. Stochastic resonance in a 2 × 2 model. The stochastic resonance is a name coined
in order to characterize the situation when the addition of noise into a periodically modulated
nonlinear system leads to an amplification of the signal-to-noise spectrum, i.e., this is a
cooperative result showing the interplay between deterministic and random dynamics in a
time-modulated system [10]. The signature of this phenomena can easily be seen from the
dynamics of a ME, as it is in the present 2 × 2 model. Consider the exact expression for the
correlation function (6.11). The power spectral density S(ω, t) is the Fourier transform of
the correlation function with respect to the variable τ . Here the time t corresponds to the time
at which one begins to take data, and since the phase of the signal with respect to this time
is usually not known (in decoherent systems), one assumes that t itself is a random variable
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distributed uniformly over one period of the signal. Then the spectral density of interest is the
average over the random phase variable

S(ω) = 1

T

∫ T

0

[
1

2π

∫ +∞

−∞
e−iωτ 〈〈q(t + τ)q(t)〉〉as dτ

]
dt

= 1

T

∫ T

0

[
1

2π

∫ +∞

−∞
e−iωτ e−λ1τB1(t, τ ) dτ

]
dt.

As we mentioned before, from (6.12), it is simple to see that B1(t, τ ) is a periodic function of τ ,
in fact given in terms of (t + τ). This τ -dependence implies the destruction of the Lorentzian
shape for the spectra, a fact that ultimately leads to the stochastic resonance phenomenon
shown in the signal-to-noise spectrum.

For a general time-modulated Markov problem, in order to study the amplification of
the signal-to-noise spectrum the important task—in the asymptotic analysis—is to consider
just the associated key function B1(t, τ ) in the corresponding expansion (5.1), or (6.10) for
discrete Markov processes.

6.2. Diagonalizable models

If the N-level master Hamiltonian can be diagonalized at any instant t, we could calculate
the spectrum of U(t + T , t) by the following device. Consider the auxiliary time-parametric
eigenvalue problem

H(t
′
) | n(t

′
)〉 = En(t

′
) | n(t

′
)〉,

where En(t), n = 0, 1, 2 . . ., are auxiliary quasienergies. Assuming the existence a complete
braket set | n(t

′
)〉, i.e., defining a suitable scalar product such that

∑
n |n(t)〉〈n(t)| = I (the

identity matrix) it is possible to show that

Tr[P(t |t ′)] =
∑

n

exp
∫ t

t ′
En(s) ds. (6.20)

From this expression we can calculate recursively any Kolmogorov’s eigenvalue. Using the
notation �(t + T , t) = Tr[P(t + T | t)] − 1, in principle any eigenvalue kn = e−λnT can be
calculated by noting that

lim
T →∞

d
dT

�(t + T , t)

�(t + T , t)
→ −λ1,

and for λ2 we have

lim
T →∞

d
dT

[�(t + T , t) − k1]

�(t + T , t) − k1
→ −λ2,

and so forth. We see that the important task is to determine the trace of matrix Green’s function
P(t + T |t).

We note that in general a time-parametric master Hamiltonian matrix H(t) cannot be
diagonalized; on the other hand only if the condition of PDB is fulfilled the diagonalization
of U(t + T , t) could be assured, see section 4.

In order to get more insight into the structure of the Kolmogorov spectrum let us now
consider a particular non-symmetric 3 × 3 model. Assume that the master Hamiltonian has
the particular structure

H =

−(β + γ ) α α

β −(α + γ ) β

γ γ −(α + β)


 , (6.21)
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(a) (b)

Figure 1. (a) Schematic drawing representing the transition rates in the 3-level stochastic process
characterized by the master Hamiltonian (6.21). Note that in principle the transition rates can be
time-periodically modulated. (b) Schematic drawing representing the transition rates characterized
by the master Hamiltonian (6.24).

where α, β, γ are positive possible time-periodic functions. The physical interpretation of
this H(t) can easily be done by using a level diagrammatic representation, see figure 1(a).
Solving system (6.13) for this model it is possible to write a closed equation for the trace of
the propagator, then we get

�(t, t ′) = Tr[P(t | t ′)] − 1

= 2 exp

[
−

∫ t

t ′
(α(s) + β(s) + γ (s)) ds

]
. (6.22)

We see that even when there is a degenerated quasienergy for (6.21), i.e., E0(t) = 0, E1,2(t) =
−α − β − γ, due to the fact that this H(t) can be diagonalized at any instant t, expression
(6.22) is in accordance with (6.20). From (6.22) it is possible to see that Kolmogorov’s time-
scale λ−1

1 is given, for this particular case, in terms of one period of time area of the transition
rates.

6.3. About the Suzuki–Trotter approach

If H(t) cannot be diagonalized at any instant t, nothing more can be told concerning the
possibility of finding analytically the non-trivial eigenvalue k1 of the Kolmogorov operator.
Therefore, in order to end the analysis of the spectrum of U(t +T , t), we give here a numerical
approach that can easily be implemented in a finite-dimensional vector space.

Consider the formal expression (6.1) to represent the Kolmogorov operator. Following
the theory of time-ordered exponential, any ordered exponential operator can be expressed by
an ordinary exponential operator in terms of the super-operator T as [17]

�T exp

(∫ t+T

t

H(τ ) dτ

)
= exp[T (H(t) + T)],

where the super-operator T is defined by its action over any operator (differentiable or not)
A(t) and B(t):

A(t) eT TB(t) = A(t + T )B(t).

Thus, using Trotter’s formula it is possible to prove that

U(t + T , t) = lim
n→∞ e

T
n

H(t+T ) · · · e
T
n

H(t+ 2T
n

) e
T
n

H(t+ T
n
). (6.23)
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Figure 2. Plot of the Kolmogorov time-scale Re[λ1]−1 = T/ ln |k1|−1 using (6.23) for
A = 1, T = 1 and b = 1, 2, as a function of the iteration number n. Suzuki–Trotter’s discretization
time is T/n.

From this expression for U(t + T , t), the characteristic polynomial can be calculated as a
perturbation in the small parameter T/n.

In order to study how fast is the convergence of this approach, let us tackle an interesting
3 × 3 model. This situation may physically correspond to the case when a periodically
modulated external pumping is acting on some discrete level 3 to produce a current to the
level 1, while the rest of transition rates Wij are time independent. We can, for example,
consider

H(t) =

−1 1 α(t)

0.5 −2 0
0.5 1 −α(t)


 . (6.24)

Clearly this is an out of equilibrium model with a diode between states 2 and 3, see figure 1(b).
Now we assume an Arrhenius-like form for the time-periodic transition rate α(t) = A eb cos ωt .
It is simple to see that if at time t ′, α(t ′) = 3 or 1, the matrix H(t ′) cannot be diagonalized.
Thus, in order to calculate the eigenvalue k1, we apply the Suzuki–Trotter approach to estimate
the characteristic polynomial of U(t + T , t)

P(k) = det |P(t + T | t) − k1|.
By studying the eigenvalues k1,2 we found that the convergence of (6.23) is well defined,

and good results are obtained just for n ∼ 10. In addition, the trivial root k0 = 1 is
always present for any n as was expected by normalization of the propagator. In figure 2,
we show the calculation of the time-scale Re[λ1]−1 for A = 1 and b = 1, 2 as a function
of n (in the present case, k1,2 are two conjugated eigenvalues and the saturation values of
Re[λ1]−1 = T/ ln |k1|−1 are 0.4688 and 0.3788 for b = 1, 2, respectively). We have checked
that (6.23) provides a straightforward method to calculate the first non-trivial time-scale
Re[λ1]−1 of periodically modulated discrete Markov processes. As expected, comparing the
present 3×3 case with the similar 2-level system of section 6.1.1, by increasing the amplitude
of the periodic modulation b, the time-scale Re[λ1]−1 decreases predicting a faster relaxation
of the associated antisymmetric eigenvector �g1(t).

Finally, as a practical application of the corollary of section 5.2, we calculated the
Lyapunov function associated with the stochastic process characterized by the 3 × 3 master
Hamiltonian (6.24), for two cases b = 1 and b = 2. The two cases are plotted in figure 3 in
semi-log scale. The lines are functions of the form f (t) = C exp(−2 Re[λ1(b)]t), where the
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Figure 3. Plot of the calculation of the Lyapunov function H(t) for the 3-level problem of
figure 1(b) for A = 1 and b = 1, 2 versus the theoretical prediction of the corollary of section 5.2.
The time is shown in units of T.

two numerical values of Re[λ1(b)] shown in figure 2 have been used. A fitting constant C has
been adjusted to match the calculations of the Lyapunov function

H(t) =
∑
qα

P(qα, t | qβ, 0) ln
P(qα, t | qβ, 0)

Pas(qα, t)
,

where we have taken qβ = δβ,1 as the initial condition. The matrix elements P(qα, t | qβ, 0)

were taken from (6.1) with the use of the Suzuki–Trotter approach to represent U(t, 0). Using
previous experience [5] the probability Pas(qα, t) was calculated from

Pas(qα, τ ) = lim
m→∞

∑
q1

· · ·
∑
qm

P(qα, τ | qm, 0)

m∏
j=1

P(qj , T | qj−1, 0).

This equation gives the asymptotic time-periodic probability as the product of m one period
propagator multiplied by the propagator from 0 to τ(τ � T ), which corresponds to a simple
multiplication of matrices. We have used m between 10 and 20 to reach the asymptotic regime.
The prediction of the corollary of section 5.2 was excellent to reproduce the relaxation of H(t)

in its long-time regime.

6.4. Final discussions

In the present paper, we have introduced the Kolmogorov eigenvalue approach to study the
stochastic dynamics of the continuous or discrete periodic non-stationary Markov process, by
exploring its Floquet structure. This theory is encoded in the lemma of section 3, reducing the
analysis to an eigenvalue problem of a Fredholm equation with a non-symmetrical kernel. In
general, we have proved that the asymptotic relaxation of a periodically modulated Markov
process is governed by the time-scale Re[λ1]−1 which is characterized by the real part of the
first non-trivial eigenvalue k1 of the Kolmogorov operator.

In section 6.1, we have discussed pedagogical examples showing the interplay of the
combined effect of fluctuations and external time-periodic modulations. Taking for example
an Arrhenius-like model for the time-modulation of the transition rates, we have shown that
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if the amplitude of periodic modulation is small, there is a range of values of the physical
parameters where the time-scale Re[λ1]−1 is of the order of the Kramers time. But in general
the mechanism leading to diffusion is non-trivial and the calculation of λ1 is of great value to
understand the relaxation and mixing of periodically modulated Markov processes. We have
shown that Kolmogorov’s spectrum analysis is also of interest in the study of the stochastic
resonance [18], and in non-equilibrium (order–disorder) phase transitions by considering the
relaxation of the asymptotic two-time correlation function [11].

For a finite-dimensional vector space, if the Kolmogorov operator cannot be diagonalized
we could only expect a Jordan form for U(t + T , t). Nevertheless finding the first non-
trivial eigenvalue k1 gives a very important piece of information concerning the asymptotic
relaxation of any discrete periodic non-stationary Markov process. As a matter of fact we
have also presented the Suzuki–Trotter approach to calculate the characteristic polynomial
in order to get the spectrum of the Kolmogorov operator. To end the section concerning
finite-dimensional vector spaces, we worked out an example showing that a Suzuki–Trotter
numerical approach is a very suitable algorithm to tackle the calculation of the Kolmogorov
time-scale for discrete periodic non-stationary Markov processes.
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[5] Caceres M O, Becker A and Kramer L 1991 Phys. Rev. A 43 6581
[6] Risken H 1984 The Fokker–Planck Equation (Berlin: Springer) , and reference therein
[7] Elliott J 1955 Trans. Am. Math. Soc. 78 406
[8] Morse P M and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill)

Montroll E W 1985 The Wonderful World of Stochastic, a Tribute to E.W. Montroll ed M F Shlesinger and
G H Wiess (Amsterdam: North-Holland) p 217

[9] See for example, Moulton F R 1958 Differential Equations (New York: Macmillan) chapter XVII
Also the quasienergy approach presented by Shirley J H 1965 Phys. Rev. B 138 979

[10] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223 , and references therein
[11] Becker A, Caceres M O and Kramer L 1992 Phys. Rev. A 46 R4463
[12] Kramers H A 1940 Phys. (Utrecht) 7 284
[13] Schuss Z and Matkowsky B J 1979 SIAM J. Appl. Math. 35 604

Matkowsky B J, Schuss Z and Matkowsky B J 1977 SIAM J. Appl. Math. 33 365
[14] Langer J S 1969 Ann. Phys., NY 54 258

Landauer R and Swanson J A 1961 Phys. Rev. 121 1668
Graham R and Schenzle A 1981 Phys. Rev. A 23 1302

[15] Caceres M O and Budini A A 1997 J. Phys. A: Math. Gen. 30 8427
[16] Spanier J and Oldham K B 1987 An Atlas of Functions (Berlin: Springer)
[17] Suzuki M 1993 Proc. Japan Acad. B 69 161
[18] Chattah A K, Briozzo C B, Osenda O and Caceres M O 1996 Mod. Phys. Lett. B 10 1085

http://dx.doi.org/10.1103/PhysRevA.43.6581
http://dx.doi.org/10.1103/PhysRev.138.B979
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1103/PhysRevA.46.R4463
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1137/0136043
http://dx.doi.org/10.1137/0133024
http://dx.doi.org/10.1016/0003-4916(69)90153-5
http://dx.doi.org/10.1103/PhysRev.121.1668
http://dx.doi.org/10.1103/PhysRevA.23.1302
http://dx.doi.org/10.1088/0305-4470/30/24/009
http://dx.doi.org/10.1142/S0217984996001231

	1. General statements
	2. The Kolmogorov operator
	3. Evolution in one period of time
	4. Periodic detailed balance
	5. Strong mixing
	5.1. A correlation function for large 
	5.2. The Lyapunov function

	6. Applications to finite-dimensional vector spaces
	6.1. Master equation toy model
	6.2. Diagonalizable models
	6.3. About the Suzuki--Trotter approach
	6.4. Final discussions

	Acknowledgments
	References

